实验表明,AI 模型对加密货币基础知识有全面的了解,并对加密货币生态系统表现出广泛的熟悉度。这些模型还表现出执行各种基本钱包操作所需的知识的熟练程度。在适当的提示下,它们的能力不仅得到了显着提高,而且还展示了按照指示执行复杂分析和操作的能力。这些发现共同表明,为众多加密货币相关领域开发 AI 应用程序现在是一个可行的前景。 然而,研究也发现了几个关键的局限性。这些模型的理论知识和实际应用技能之间存在很大差距,特别是在与加密相关的计算方面。虽然它们能够生成简单的智能合约,但它们很难识别更复杂协议中的复杂漏洞。此外,这些模型无法解决在基于云的 AI 系统中安全管理私钥的基本挑战。 随着实验的进展,一个迫切的需求变得显而易见:加密领域需要标准化的 AI 基准。然而,创建这样的基准并非易事。它面临着几个重大挑战:加密技术的快速发展,其知识库仍在不断变化,并且在多个核心方向上缺乏共识;该领域的跨学科性质,涵盖密码学、分布式系统、经济学等,其复杂性远远超过任何单一领域;不仅需要评估理论知识,还需要评估人工智能利用加密技术的实际能力,这需要设计新的评估框架;必须确保基准测试任务与 DeFi、NFT、DAO 和其他新兴加密领域的实际应用保持相关,相关数据集的稀缺性进一步加剧了难度。 【原文为英文】\n原文链接